Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Total Environ ; 796: 148964, 2021 Nov 20.
Article in English | MEDLINE | ID: covidwho-1316627

ABSTRACT

Medical waste (MW) has exploded since the COVID-19 pandemic and aroused great concern to MW disposal. Meanwhile, the energy recovery for MW disposal is necessary due to high heat value of MW. Harmless disposal of MW with economically and environmentally sustainable technologies along with higher energy recovery is urgently required, and their energy recovery efficiencies and environmental impacts reduction due to energy recovery are key issues. In this study, five MW disposal technologies, i.e. rotary kiln incineration, pyrolysis incineration, plasma melting, steam sterilization and microwave sterilization, were evaluated and compared via energy recovery analysis (ERA), life cycle assessment (LCA), and life cycle costing (LCC) methods. Furthermore, three MW incineration technologies with further energy recovery and two sterilization followed by co-incineration technologies were analyzed to explore their improvement potential of energy recovery and environment benefits via scenario analysis. ERA results reveal that the energy recovery efficiencies of "steam and microwave sterilization + incineration" are the highest (≥83.4%), while that of the plasma melting is the lowest (19.2%). LCA results show that "microwave sterilization + landfill" outperforms others while the plasma melting exhibits the worst, electricity is the most significant contributor to the environmental impacts of five technologies. Scenario analysis shows that the overall environmental impact of all technologies reduced by at least 45% after further heat utilization. LCC results demonstrate that pyrolysis incineration delivers the lowest economic cost, while plasma melting is the highest. Co-incineration of sterilized MW and municipal solid waste could be recommended.


Subject(s)
COVID-19 , Medical Waste Disposal , Refuse Disposal , China , Humans , Pandemics , SARS-CoV-2
2.
Waste Manag ; 126: 388-399, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1157781

ABSTRACT

The COVID-19 pandemic attracts concerns globally and leads to an exponential increase in medical waste generation, and disposal of medical waste is an urgent need for preventing the epidemic spread. Emergency disposal scenarios of medical waste generated during the COVID-19 pandemic require a systematic assessment to quantify their potential environmental impacts. The environmental impacts and key factors of three movable disposal scenarios (i.e. incineration disposal vehicle, movable steam and microwave sterilization equipment both followed by co-incineration with municipal solid waste) were quantified via life cycle assessment approach. Furthermore, the environmental impacts of three movable disposal and two co-incineration scenarios were compared via life cycle assessment by expanding system boundaries. The results show that co-incineration with municipal solid waste has the lowest environmental impacts due to environmental benefits produced by power generation, while co-incineration with hazardous waste is the highest due to the high energy consumption. Energy consumption (i.e. kerosene, electricity and diesel) are the key factors for three movable disposal scenarios. For movable steam and microwave sterilization equipment followed by co-incineration with municipal solid waste, power generation from incinerating disinfected medical waste has significant beneficial environmental impacts due to avoided impacts of electricity consumption. The recommendations for improvement of the emergency disposal and management of medical waste during the COVID-19 pandemic globally and other serious epidemic in the future are provided.


Subject(s)
COVID-19 , Medical Waste , Refuse Disposal , Waste Management , Animals , China , Humans , Incineration , Life Cycle Stages , Pandemics , SARS-CoV-2 , Solid Waste/analysis , Waste Disposal Facilities
SELECTION OF CITATIONS
SEARCH DETAIL